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In this proposal, we suggest a method for the numerical simulation of problems containing multi-scale structures. The necessity of
very fine meshes is mitigated by modeling the resulting singularities with a lumped element approach. In particular, the embedding
of a 1D structure in a 3D setting is addressed here. The 1D-3D interface is established by using de Rham currents in the continuous
and nodal Whitney functions in the discrete setting. For an application example, thin bond wires in a microelectronic chip package
are considered for electrothermal co-simulation. First results for the linear electrokinetic case are given.
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I. INTRODUCTION

NOWADAYS, with the continuous shrinking of feature
sizes in electronics, current densities increase and thus

thermal issues arise. In this proposal, we consider the elec-
trothermal simulation of microelectronic chip packages that
contain very thin bond wires as shown in Fig. 1a. This setting
is numerically challenging due to the 1D-like geometry of the
wires. Such a multi-scale problem can be addressed, e.g., with
a 1D-3D coupling.

In this work, following [1], we use a 1D network represen-
tation for the wires, which we interpret as an electric circuit.
Other approaches to incorporate thin wires into the simulation
have been proposed for high-frequency applications [2]. The
aim of this work is to embed the microelectronics application
into the general and rigorous mathematical framework given in
[1]. As a result, new discretization strategies become evident
and important properties of the numerical scheme, in particular
error convergence rates, can be obtained. Specifically, we con-
sider an electrothermal coupling, allowing for the verification
of thermal designs.

II. CONTINUOUS FORMULATION

In this work, we neglect magnetic and capacitive effects and
consider the coupling of the electrokinetic problem with the
static heat equation. For the time being, we additionally neglect
the bond wire contribution and consider

∇ · ~Jσ(ϕ) = 0, ∇ · ~Jλ(T ) = Q( ~Jσ, T ), (1)

with suitable boundary conditions. The variables introduced
in (1) are the electric potential ϕ, the electric and thermal
current densities ~Jσ and ~Jλ, respectively, the temperature T
and the Joule losses Q. The electric and thermal conductivities
σ and λ are modeled to be temperature dependent. Due to the
comparably small diameter of the bond wires, we treat them
using an external 1D model connected to the computational
domain D. To represent arising singularities appropriately, de
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Fig. 1. (a) Microelectronic chip package with applied bond wires and (b) test
structure of a bended wire that connects two electrodes.

Rham currents [3] are used. They allow to express a current
density ~J and a line current I by the 1-currents

J (~v) :=

∫
D

~J · ~v dx and I(~v) :=
∫
γ

I~t · ~v dx,

with ~v ∈ (C∞0 (D))
3, the unit tangent vector ~t and an arbitrary

curve γ. To model a bond wire, we identify γ as the wire’s
curve and I as its current. Adding the bond wire contribution
to (1), we obtain

div(Jσ + Iσ)(v) = 0, (2a)

div(Jλ + Iλ)(v) =
(
Q +Qbw) (v) , (2b)

for all v ∈ C∞0 (D), where div refers to the divergence in
the sense of distributions. Here, Q and Qbw are de Rham 0-
currents representing the Joule losses Q from the distributed
(3D) and from the bond wire (1D) part, respectively.

III. DISCRETIZATION

To solve the problem presented in Section II, a discretization
scheme is required. We first describe the 1D discretization
of the wire before explaining the interface to the 3D part.
Note that the 3D discretization can be carried out by any
applicable scheme, as, e.g., finite differences, finite integration,
finite elements and others.



A. 1D Wire

If a spatial discretization is used, a bond wire either needs
to be resolved by the 3D mesh or both meshes must be
interconnected. Here, we follow the latter approach and model
the wire as a series connection of N lum lumped resistors with
a 1D discretization of its current, see Fig. 2. This scheme can
be understood as a 1D finite element discretization of the wire
and we connect it to the 3D discretization by using (N lum +1)
coupling points along its path. The herewith introduced 1D
discretization error can be controlled by the choice of N lum

and the number of 3D mesh cells.

B. 1D-3D Interface

In the following, we exploit the analogy of the electric and
thermal case and use a notation that represents both cases. After
the 1D discretization of a single wire was introduced, it needs
to be embedded into the 3D discretization of the full model.
Using the same symbols for continuous and discrete de Rham
currents, the discrete representation of (2) is given by

div (J + I) (Wk) = 0, k = 1 . . . NN,

with NN primary grid nodes and Wk being the nodal Whitney
function. For node Pk, the discrete divergence of the wire
current reads

div I(Wk) = −
N lum∑
j=1

Ij
(
(Rbw

P )j+1,k − (Rbw
P )j,k

)
= −((GRbw

P )>I)k,

where G is the gradient matrix and I the current vector of
the wire. Rbw

P denotes the operator that connects the 1D wire
model to the 3D grid. If the 1D-3D coupling point does not
coincide with a grid node, the connection is established by
an interpolation scheme using, e.g., the evaluation of nodal
Whitney functions. With the potential and temperature vectors
ϕ and T, respectively, and Xbw := GRbw

P and I = MXbwϕ,
the discrete system with bond wire contribution is given by

−G>jσ(ϕ) + (Xbw)>MσX
bwϕ = 0,

−G>jλ(T) + (Xbw)>MλX
bwT = Q+Qbw,

where G is the 3D gradient matrix and j{σ,λ} are the discrete
currents in the 3D part. M{σ,λ} contains the conductance val-
ues of the 1D circuit elements and Q and Qbw are the discrete
Joule losses from the 3D and the 1D model, respectively. This
problem is closely related to the one presented in [1].
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Fig. 2. Bond wire model of N lum lumped elements and its discretized current.

TABLE I
JOULE POWER Q̂ WITH THE WIRE FRACTION α.

in-house CST

α
3 · 10−3 3.79W 3.80W
5 · 10−3 10.51W 10.56W

IV. NUMERICAL VALIDATION

For a first validation, the proposed method was applied to the
linear electrokinetic problem. As a test structure, a thin bended
copper wire of thickness d that connects two copper electrodes
of height h = 1 cm was used and a voltage of 1V was applied
(c.f. Fig. 1b). The remaining space is filled by an epoxy mold
with σ = 10−6 S/m. Since the validity of the singular 1D wire
model is given by the relative dimension of the wire thickness
compared to the size of the full model, the fraction α = d/h
instead of the absolute wire thickness is used.

For the spatial discretization, a regular orthogonal Cartesian
hexahedral mesh is applied. Using an equidistant distribution
of the mesh nodes in each coordinate direction and with the
1D-3D connections points giving additional nodes, an almost
homogeneous mesh with 2.86 · 106 cells is obtained. As a
reference, the CST EM STUDIO R© was used to compute a
solution with a resolved wire using a fine mesh with local and
adaptive refinement.

The quantity of interest is given by the Joule loss power of
the 1D and 3D part and has been calculated by

Q̂ = −ϕ>G>jσ(ϕ) +ϕ>(Xbw)>MσX
bwϕ.

This power was computed using N lum = 4 for different
wire fractions α, see Table I. Reference values computed by
CST EM STUDIO R© are shown as well. Since the 1D model
becomes more accurate for thinner wires, the modeling error
is expected to decrease with decreasing α. On the other hand,
the discretization error can be controlled by N lum for the 1D
model and by the choice of the 3D grid.
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